怎样缓解剧烈运动之后带来的肌肉酸痛

不要问我在哪里买,或者买哪家,我不带货,立场完全中立


一、延迟酸疼的机理

高强度训练后很容易发生肌肉损伤[1][2],这一般被称为Exercise-Induced Muscle Damage,即运动引起的肌肉损伤,简称EIMD[3][4]。EIMD是目前主流科学体系中解释运动后延迟酸疼的主要原因,它被认为是一种内源性的炎症[5][6][7][8]

在高强度运动后,肌肉因为机械外力,一般会发生一些损伤;与割伤和外来细菌感染类似,这些损伤会被身体识别,身体会释放和分泌一些信号(被称为炎症因子,意思是能触发炎症的信号),这些信号吸引巨噬细胞和中性粒细胞在损伤的肌肉位置聚集,释放一些化合物(生物氧化剂)来『溶解』破损的肌纤维[9][10][11],就有点像拆迁队拆掉旧房子[12][13]

于是,受损的肌纤维被溶解和拆除,所以其中的部件就容易流出来,溢出到血液中,比如肌肉中的酶:肌酸激酶CK、乳酸脱氢酶LDH,甚至肌肉中的蛋白质肌红蛋白[14]。所以大家一般在运动后几天,相应的肌肉会明显的肿胀增大,这就是炎症带来的组织水肿

因此,补充一些能抗炎和抗氧化的营养素[15]、或许可以起到抑制和缓解内源性炎症的作用,从而促进身体恢复、降低肌肉酸疼。

二、缓解肌肉酸疼,提一种冷门营养素:姜黄素

姜黄是一种多年生草本植物[16],是一些亚洲国家的传统草药,具有悠久的药用植物历史[17][18];姜黄素[19][20]是其中的一种重要成分,归类上属于多酚[20][21],一般在相关植物中含量2-5%。

图1:姜黄素

姜黄素具有抗炎和抗氧化特性[3][22],还具有一定的杀菌抗微生物[23][24]、影响脂肪代谢[25][26][27]、降低血脂[28]、潜在的肝脏保护功能[29][30][31]和一定的防癌抗癌作用[32][33]。高剂量的姜黄被认为对人类无害,目前FDA已将姜黄素列为GRAS(公认安全)[34][35],含姜黄素的补充剂已被批准用于人类摄入。

姜黄素的主要作用是抗炎症和抗氧化。 姜黄素通过多条细胞信号路径调节炎症,特别是抑制一些细胞内的蛋白信号(JAKs和STATs蛋白);姜黄素也通过与另一些信号蛋白(NF-κB和IκB蛋白)进行直接相互作用,来抑制NF-κB。

图2:姜黄素抑制炎症因子的分子路径,作者Kolsoum等人2019首发于《炎症药理学》

NF-κB是一种炎症信号[36],能控制人体的炎症水平,也控制肌肉分解(蛋白质氧化)[36]。姜黄素通过抑制这些与炎症相关的信号蛋白,来下调运动后肌肉的炎症水平和酸疼水平;此外姜黄素还过影响COX-2信号传导,来调节炎症和细胞因子流量[37]

三、相关证据

目前的证据显示,姜黄素的作用并不是特别强大,但是对于降低训练后的身体炎症水平、缓解训练后的肌肉酸疼等,很可能有一定程度的帮助。

Diego等人[38]对63名经常运动的男性和女性补充了8周的姜黄素(或安慰剂)。图中的实线PLA是安慰剂组,虚线是50mg组,灰线是200mg组,纵轴是疼痛感。安慰剂或者补充50mg姜黄素的组的运动后疼痛没有明显改善,补充200mg的组,延迟酸疼有所改善:

图3:姜黄素对延迟性酸疼的降低作用

Drobnic等人[39]进行了一项初步研究,健康和时常运动的男性进行下坡跑之前摄入姜黄素(200mg/天,持续4天),在运动后48小时股四头肌疼痛减少,并且通过磁共振(MRI)测量显示肌肉损伤明显减少;

Nicol及其同事[40]同样发现,在男性业余健身爱好者中,补充姜黄素5天,适度减少了48小时恢复期间的延迟性肌肉酸疼,减弱了其7×10腿举引起的肌肉损伤,其肌酸激酶活性和外流量下降;

Ralf等人[41]将63名积极参运动的男性和女性进行了双盲、随机、安慰剂对照平行设计,随机分配摄入50mg、250mg姜黄或玉米淀粉安慰剂组,8周的高剂量姜黄素补充,对减轻延迟酸疼和肌肉损伤恢复的效果虽然没有达到统计上的显著性,但具有减轻的趋势;

Brian等人[42]对未经训练的年轻男性和女性进行了研究,受试者进行了大强度训练,包括6组×10次强调离心运动的腿举,摄入400毫克/天的姜黄素,肌肉损伤减轻(外流的肌酸激酶活性下降)、炎症反应减弱(TNF-α和IL-8这些炎症因子下调);

Tanabe等人[43]对年轻男性进行肘部屈肌(比如肱二头肌)离心训练后,与安慰剂组相比,补充姜黄素的组恢复略快(最大收缩力量下降较少),肌肉损伤也低一些(血清肌酸激酶活性较低);

Wilson等人[44]的研究中,在20-22英里的训练跑之前3天和之后2天,每天摄入2.2克生姜的男性和女性训练跑步者,他们的肌肉功能没有受到影响,但运动后24小时的酸痛减轻了。

动物研究也支持人类实验的结果[45],在离心运动后,与补充安慰剂的小鼠相比,补充姜黄素的大鼠自主活动有所增加、跑步表现有所改善。

总之,姜黄素的效果不能说很强烈很明显,但还是可以认为它对运动后的炎症反应(肌肉酸疼)有一定程度的缓解作用(因人、因计量、因补充方式)。

四、姜黄素对心血管可能有利

心血管疾病与全身慢性炎症密切相关,姜黄素能调节炎症,改善血管功能的作用,有利于心血管。

《国际心脏病》杂志2009年的研究认为[46],姜黄素的抗氧化作用已被证明可减轻阿霉素诱导的心脏毒性、预防糖尿病心血管并发症、抗血栓形成,有助于降低血清胆固醇水平、对抗防止动脉粥样硬化等。

图4:International Journal of Cardiology. 2009

有一项动物研究报道,研究对象是猪。先用高半胱氨酸诱导猪发生血管内皮功能障碍,再补充姜黄素,发现病情有所逆转[47]

姜黄素被一些研究[48]证明可以增加血管舒张,类似于有氧运动。在平均60岁的中老年妇女中,8周补充姜黄素,跟有氧运动产生了类似的效果,增强了血管内皮功能。

日本的Sugawara等人[49]发现,姜黄素与有氧运动结合,比单独值摄入姜黄素、或者单纯只进行有氧运动,对降低左心室后负荷的效果更好,对心脏更有利。

图5:AMERICAN JOURNAL OF HYPERTENSION | VOLUME 25 NUMBER 6 | 651-656 | june 2012

根据原文提供的数据,有氧运动与姜黄素摄入结合,比单纯摄入姜黄素或者单纯只进行有氧运动的效果更好。

图6

五、关于反对和质疑的声音

当然,反面的声音也存在,我们也提一提。Gaffey等人[50]对姜黄素的效果提出了质疑,认为其缓解运动后疼痛和改善肌肉功能的证据强度不足,不能有力证明其作用。

不过同行评审认为这是因为在某些研究中的配方问题导致吸收率和利用率不足[51][52],因为姜黄素确实存在溶解性差、肠道吸收低、代谢快等特点[53][54]

也就是说,可能姜黄素是有用的,但是有些研究中的制剂还不够好,吸收不好,所以作用不明显。于是后来开发了各种增加姜黄吸收的办法,如姜黄乳化剂、脂溶体等[55][56],其吸收和利用得到了一定改善。

扩展阅读:

肉崽:体脂高是否影响增肌?

肉崽:男性为什么也会产生雌性激素?

肉崽:有哪些容易导致人体小腹容易堆积脂肪的,具有普适性的原因?

肉崽:有氧运动会掉肌肉吗?

肉崽:高位下拉时如何避免前臂代偿发力?

参考

  1. ^Garrett WE, Jr., Califf JC, Bassett FH. Histochemical correlates of hamstring injuries. Am J Sports Med 1984: 12:98-103.
  2. ^Tanabe Y., Chino K., Ohnishi T., Ozawa H., Sagayama H., Maeda S., Takahashi H. Effects of oral curcumin ingested before or after eccentric exercise on markers of muscle damage and inflammation. Scand. J. Med. Sci. Sport. 2018;29:524–534.
  3. [1](#ref_3_0)banabe Y., Maeda S., Akazawa N., Zempo-Miyaki A., Choi Y., Ra S.G., Nosaka K. Attenuation of indirect markers of eccentric exercise-induced muscle damage by curcumin. Eur. J. Appl. Physiol. 2015;115:1949–1957.
  4. ^Fatouros I.G., Jamurtas A.Z. Insights into the molecular etiology of exercise-induced inflammation: Opportunities for optimizing performance. J. Inflamm. Res. 2016;9:175–186.
  5. ^Armstrong RB, Warren GL, Warren JA. Mechanisms of exerciseinduced muscle fibre injury. Sports Med. 1991;12:184–207.
  6. ^Brooks SV, Faulkner JA. Skeletal muscle weakness in old age: underlying mechanisms. Med Sci Sports Exerc. 1994;26:432–439.
  7. ^Schieber M., Chandel N.S. ROS function in redox signaling and oxidative stress. Curr. Biol. 2014;24:R453–R462.
  8. ^He F., Li J., Liu Z., Chuang C.-C., Yang W., Zuo L. Redox mechanism of reactive oxygen species in exercise. Front. Physiol. 2016;7:486.
  9. ^McBride TA, Gorin FA, Carlsen RC. Prolonged recovery and reduced adaptation in aged rat muscle following eccentric exercise. Mech Ageing Dev. 1995;83:185–200.
  10. ^Sacco P, Jones DA. The protective effect of damaging eccentric exercise against repeated bouts of exercise in the mouse tibialis anterior muscle. Exp Physiol. 1992;77:757–760.
  11. ^Timothy J. Koh,1 Jennifer M. Peterson,2 Francis X. Pizza,2 and Susan V. Brooks.Passive Stretches Protect Skeletal Muscle of Adult and Old Mice From Lengthening Contraction-Induced Injury.Journal of Gerontology: BIOLOGICAL SCIENCES.2003, Vol. 58A, No. 7, 592–597.
  12. ^Lieber RL, Fride´n J. Mechanisms of muscle injury after eccentric contraction. J Sci Med Sport. 1999;2:253–265
  13. ^Morgan DL, Allen DG. Early events in stretch-induced muscle damage. J Appl Physiol. 1999;87:2007–2015
  14. ^Fatouros I.G., Jamurtas A.Z. Insights into the molecular etiology of exercise-induced inflammation: Opportunities for optimizing performance. J. Inflamm. Res. 2016;9:175–186.
  15. ^Braakhuis A.J., Hopkins W.G. Impact of dietary antioxidants on sport performance: A review. Sports Med. 2015;45:939–955.
  16. ^Priyadarsini K.I. The chemistry of curcumin: From extraction to therapeutic agent. Molecules. 2014;19:20091–20112.
  17. ^ He F., Li J., Liu Z., Chuang C.-C., Yang W., Zuo L. Redox mechanism of reactive oxygen species in exercise. Front. Physiol. 2016;7:486.
  18. ^Lestari M.L., Indrayanto G. Curcumin. Profiles Drug Subst. Excip. Relat. Methodol. 2014;39:113–204.
  19. ^Jäger R., Purpura M., Kerksick C.M. Eight Weeks of a High Dose of Curcumin Supplementation May Attenuate Performance Decrements Following Muscle-Damaging Exercise. Nutrients. 2019;11:1692
  20. [2](#ref_20_0)bKocaadam B., Şanlier N. Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit. Rev. Food Sci. Nutr. 2017;57:2889–2895.
  21. ^Aggarwal B.B., Kumar A., Bharti A.C. Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer Res. 2003;23:363–398.
  22. ^Tanabe Y., Chino K., Ohnishi T., Ozawa H., Sagayama H., Maeda S., Takahashi H. Effects of oral curcumin ingested before or after eccentric exercise on markers of muscle damage and inflammation. Scand. J. Med. Sci. Sport. 2018;29:524–534.
  23. ^Mahady G.B., Pendland S.L., Yun G., Lu Z.Z. Turmeric (Curcuma longa) and curcumin inhibit the growth of Helicobacter pylori, a group 1 carcinogen. Anticancer Res. 2002;22:4179–4181.
  24. ^Reddy R.C., Vatsala P.G., Keshamouni V.G., Padmanaban G., Rangarajan P.N. Curcumin for malaria therapy. Biochem. Biophys. Res. Commun. 2005;326:472–474.
  25. ^Arafa H. Curcumin attenuates diet-induced hypercholesterolemia in rats. Med Sci Monit. 2005;11:BR228–BR234.
  26. ^Rukkumani R, Aruna K, Varma P, Rajasekaran K, Menon V. Comparative effects of curcumin and its analog on alcohol- and polyunsaturated fatty acid-induced alterations in circulatory lipid profiles. J Med Food. 2005;8:256–260.
  27. ^Yiu W, Kwan P, Wong C. et al. Attenuation of fatty liver and prevention of hypercholesterolemia by extract of curcuma Longa through regulating the expression of CYP7A1, LDL-receptor, HO-1, and HMG-CoA reductase. J Food Sci. 2011;76:H80–H89.
  28. ^DiSilvestro R.A., Joseph E., Zhao S., Bomser J. Diverse effects of a low dose supplement of lipidated curcumin in healthy middle-aged people. Nutr. J. 2012;11:79.
  29. ^Naik S, Thakare V, Patil S. Protective effect of curcumin on experimentally induced inflammation, hepatotoxicity and cardiotoxicity in rats: evidence of its antioxidant property. Exp Toxicol Pathol. 2011;63:419–431.
  30. ^Craxı A, Almasio P. Diagnostic approach to liver enzyme elevation. J Hepatol. 1996;25S:47–51.
  31. ^Girish C, Koner B, Jayanthi S, Ramachandra Rao K, Rajesh B, Pradhan S. Hepatoprotective activity of picroliv, curcumin and ellagic acid compared to silymarin on paracetamol induced liver toxicity in mice. Fundam Clin Pharmacol. 2009;23:735–745.
  32. ^Vera-Ramirez L., Perez-Lopez P., Varela-Lopez A., Ramirez-Tortosa M., Battino M., Quiles J.L. Curcumin and liver disease. Biofactors. 2013;39:88–100.
  33. ^Wright L.E., Frye J.B., Gorti B., Timmermann B.N., Funk J.L. Bioactivity of turmeric-derived curcuminoids and related metabolites in breast cancer. Curr. Pharm. Des. 2013;19:6218–6225.
  34. ^Administration USFaD . Generally Recognized as Safe (GRAS) FDA. FDA; Silver Spring, MD, USA: 2016.
  35. ^Córdova Martínez A. Sports Physiology. 1st ed. Synthesis; Madrid, Spain: 2013. pp. 65–74.
  36. [3](#ref_36_0)bHewlings S., Kalman D. Curcumin: A review of its’ effects on human health. Foods. 2017;6:92.
  37. ^McFarlin BK, Venable AS, Henning AL, Sampson JNB, Pennel K, Vingren JL, et al. Reduced inflammatory and muscle damage biomarkers following oral supplementation with bioavailable curcumin. BBA Clinical. 2016;5:72–78.
  38. ^Diego Fernández-Lázaro,1,* Juan Mielgo-Ayuso,2 Jesús Seco Calvo,3 Alfredo Córdova Martínez,2 Alberto Caballero García,4 and Cesar I. Fernandez-Lazaro1,5.Modulation of Exercise-Induced Muscle Damage, Inflammation, and Oxidative Markers by Curcumin Supplementation in a Physically Active Population: A Systematic Review.Nutrients. 2020 Feb; 12(2): 501.
  39. ^Kocaadam B., Şanlier N. Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit. Rev. Food Sci. Nutr. 2017;57:2889–2895.
  40. ^Administration USFaD . Generally Recognized as Safe (GRAS) FDA. FDA; Silver Spring, MD, USA: 2016.
  41. ^Jäger R., Purpura M., Kerksick C.M. Eight Weeks of a High Dose of Curcumin Supplementation May Attenuate Performance Decrements Following Muscle-Damaging Exercise. Nutrients. 2019;11:1692
  42. ^McFarlin BK, Venable AS, Henning AL, Sampson JNB, Pennel K, Vingren JL, et al. Reduced inflammatory and muscle damage biomarkers following oral supplementation with bioavailable curcumin. BBA Clinical. 2016;5:72–78.
  43. ^Tanabe Y, Maeda S, Akazawa N, Zempo-Miyaki A, Choi Y, Ra S-G, et al. Attenuation of indirect markers of eccentric exercise-induced muscle damage by curcumin. Eur J Appl Phys. 2015;115(9):1949–1957.
  44. ^Wilson PB, Fitzgerald JS, Rhodes GS, Lundstrom CJ, Ingraham SJ. Effectiveness of ginger root (Zingiber officinale) on running-induced muscle soreness and function: a pilot study. Int J Athl Ther Train. 2015;20(6):44–50.
  45. ^Braakhuis A.J., Hopkins W.G. Impact of dietary antioxidants on sport performance: A review. Sports Med. 2015;45:939–955.
  46. ^Wongcharoen W., Phrommintikul A. The protective role of curcumin in cardiovascular diseases. International Journal of Cardiology. 2009;133(2):145–151.
  47. ^Ramaswami G., Chai H., Yao Q., Lin P. H., Lumsden A. B., Chen C. Curcumin blocks homocysteine-induced endothelial dysfunction in porcine coronary arteries. Journal of Vascular Surgery. 2004;40(6):1216–1222.
  48. ^ Akazawa N., Choi Y., Miyaki A., et al. Curcumin ingestion and exercise training improve vascular endothelial function in postmenopausal women. Nutrition Research. 2012;32(10):795–799.
  49. ^Sugawara J., Akazawa N., Miyaki A., Choi Y., Tanabe Y., Imai T., Maeda S. Effect of endurance exercise training and curcumin intake on central arterial hemodynamics in postmenopausal women: Pilot study. Am. J. Hypertens. 2012;25:651–656.
  50. ^Gaffey A., Slater H., Porritt K., Campbell J.M. The effects of curcuminoids on musculoskeletal pain: A systematic review. JBI Database Syst. Rev. Implement Rep. 2017;15:486–516.
  51. ^Harty P.S., Cottet M.L., Malloy J.K., Kerksick C.M. Nutritional and Supplementation Strategies to Prevent and Attenuate Exercise-Induced Muscle Damage: A Brief Review. Sports Med. Open. 2019;5:1.
  52. ^Anand P., Kunnumakkara A.B., Newman R.A., Aggarwal B.B. Bioavailability of curcumin: Problems and promises. Mol. Pharm. 2007;4:807–818.
  53. ^Hewlings S., Kalman D. Curcumin: A review of its’ effects on human health. Foods. 2017;6:92.
  54. ^Derosa G., Maffioli P., Simental-Mendia L.E., Bo S., Sahebkar A. Effect of curcumin on circulating interleukin-6 concentrations: A systematic review and meta-analysis of randomized controlled trials. Pharmacol. Res. 2016;111:394–404.
  55. ^Noorafshan A., Ashkani-Esfahani S. A review of therapeutic effects of curcumin. Curr. Pharm. Des. 2013;19:2032–2046.
  56. ^Hatcher H., Planalp R., Cho J., Torti F., Torti S. Curcumin: From ancient medicine to current clinical trials. Cell Mol. Life Sci. 2008;65:1631–1652.

  1. a ↩︎

  2. a ↩︎

  3. a ↩︎